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ABSTRACT

In order to find ideal design of hybrid photovoltaic-diesel power system,
genetic algorithm is an efficacious technique. The optimum design gives
architecture structure, which has finest selection of components and size
in accordance with suitable controlled strategy to offer budget friendly
and dependable energy substitute. During the search of the best solution,
among potential solutions, the aforementioned algorithm tries to find out
solution that has minimum total net present cost. Yet, while using com-
plex economic models in order to calculate the value of population fitness,
this hunt takes the shape of expensive optimization problem. In order to
shrink the deficiencies carried by genetic algorithm, current paper pro-
poses low cost version of cluster-based genetic algorithm grounded upon
statistical approaches, which considerably reduces the cost for evaluation
of fitness function and bolster the performance. Population is divided into
several clusters and multiple linear regression model is obtained from each
clusters. Principal component analysis takes responsibility to increase
possibility of having good estimation. During the course of probing, the
values of population fitness are computed from corresponding model that
is comparatively cost effective than direct evaluation. Algorithm is being
used to identify clusters is denoted by k -means, which operates the pro-
cess at low cost. The performance of proposed method is judged on the
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basis of benchmark case study. The obtained results indicate the efficacy
of proposed method for the model of hybrid photovoltaic-diesel power
design via genetic algorithm workflow.

Keywords: Hybrid photovoltaic-diesel energy system, genetic algorithm,
regression, principal component analysis, clustering.

1. Introduction

Development of a hybrid photovoltaic-diesel renewable energy power system
(PV-diesel system) might be regarded as a problem faced in arrangement of
elements. For instance, taking an example of battery, PV panel, each of them
have a specific, type and strategy that will define suitable size of elements and
a control strategy, which will enhance the performance along with reduction
of cost. The problem related to optimization of PV-diesel system design is
almost impossible to be resolved in polynomial time as search space widens
up and myriad types of elements are included in the consideration. This issue
instigated the researchers to use heuristic techniques to obtain a satisfactory
(near to optimum) solution. A genetic algorithm (GA) is one of well-known
heuristic techniques used to solve not only PV-diesel system design problem
but other hybrid renewable energy power system (HRES) also (Fadaee and
Radzi, 2012). The GA follows a probing strategy established upon laws of
natural evolution in order to find optimum solution. In addition to, demand-
less examination of the structure of the data and to integrate it with supporting
knowledge, the capacity of GA to examine solutions in myriad directions have
termed it as common selection for resolving the combinatorial optimization
problems (Konak et al., 2006).

Using GA in the capacity of search engine to design PV-diesel system, it is
of utmost importance to understand, the relative higher cost for the appraisal
of the problem because of two reasons. First, genetic algorithm required higher
costs to gauge the suitability of large number of individuals in the population.
This is supposedly necessary as the genetic algorithm has ability to provide
acceptable results when it is dealing with large population. Genetic drift is one
of the negative outcomes of having smaller population size. Second, cost on the
evaluation of individual that is associated with total net present cost (TNPC)
calculation turns implementation of GA. TNPC is the cost incurred at the time
of investments along with the discounted current values of all future costs that
will incur throughout the useful life span of the implemented system. In fact,
it embodies actual fitness value of the different potential solutions; however it
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demands long simulation procedure, as depicted in HOGA (Dufo-López and
Bernal-Agustín, 2005). Subsequent part will give relevant contextual informa-
tion about HOGA. Generally, including knowledge into genetic algorithm can
minimize calculation stress, according to which easiest method is assessing fit-
ness of an individual after comparison with other similar individual. Clustering
technique is one of tools, suggested by this approach (Wu, 2008).

According to clustering approach, population is divided into several small
sub-groups. After this one individual is selected from each cluster and fitness is
appraised by using original fitness function. The fitness of remaining members
of group is measured against by taking proportion of fitness of representative in-
dividual, of same cluster, as benchmark. With less function evaluation, current
GA is regarded as cost friendly optimization technique. Still, simplicity of GA
does not provide assurance that GA will always converge to the global optimum
Ref. (Santana-Quintero et al., 2010). There should be some betterment to ad-
dress this concern. Ref. Wu (2008) proposed a maximum theoretical distance
to scale the distance before performing fitness computation. In ref. Jong-Won
and Sung-Bae (2011), through the membership function, the fitness values of
other individuals are estimated from the fitness values of the representative
individuals. The importance of estimation model has been surfaced, because of
improperly selected representatives of the cluster can bring impediments in the
integration of GA (Shi and Rasheed, 2010). The grounding of the concept is to
estimate the value of individual fitness through the usage of locally developed
estimation scheme for each cluster. Polynomial function, neutral network and
support vector machine and Krigling model are most popular models for this
purpose (Santana-Quintero et al., 2010). But, use of aforementioned models
to the glitches of a higher dimension is not applicable because of the computer
cost of developing and executing model in several cases are comparable to the
original fitness function (Santana-Quintero et al., 2010).

This research aims at redressing the technical deficiencies of cluster-based
GA and suggests a substitute evaluation method. Moreover, it is trying to seek
a cost effective version of GA for designing PV-diesel power system. This study
believes that it can be accomplished by establishing new relationships between
determining factors and TNPC. Thus, multiple linear regression (MLR) analy-
sis is conducted to establish estimation functions for calculating fitness values
of the population of the PV-diesel optimization problem. Such estimates of
functions are being provided, based on size of components e.g. quantity of PV
panel, diesel generator power output, etc and strategies of operation. In order
to deal with the multicollinearity issue, faced in regression analysis, along with
improving predictive power of the models, regression coefficients are estimated
using principal component analysis (PCA). Interestingly, it should be noted
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that the PCA-tuned regression analysis is conducted at initial stage of GA and
every cluster will be linked to a MLR model. Although, decrease in number of
fitness evaluation has not been witnessed, yet the allocation of individual fitness
through usage of linear regression is simple than TNPC calculation. Moreover,
this new evaluation method is more result oriented and meaningful than the
indirect method applied in conventional cluster-based GA.

2. Photovoltiac-Diesel Power System Design

Hybrid PV-diesel power system is composed of solar photovoltaic panels, a
battery bank, diesel generator and inverter, which function together in efficient
and smart manner. Renewability resources of the energy, whenever it is placed
in sunlight, are the major benefit of PV-diesel system. Moreover, diesel gen-
erator provides the back-up support facility in the absence of primary sources
of energy. Having this capability, hybrid system is more advantageous, bud-
get friendly and clean than that of conventional single source diesel system of
energy (Amer et al., 2013).

The main task of developing autonomous system of power through exploit-
ing renewable sources of energy is to determine exact selection of components
along with their size and to define an appropriate strategy operate the system,
which will be dependable and cost effective for a longer period of time. Fig.
1 depicts an example of PV-diesel system in the form of block diagram where
related PV-diesel optimization model can be viewed in ref. Dufo-López and
Bernal-Agustín (2008). The classical optimization techniques fall short to pro-
vide desired results, whenever possible combinations and variables in the model
exceed a specific limit. To cope with the limitation, a computer program called
Hybrid Optimization through Genetic Algorithm (HOGA) is purposefully de-
signed to addresses the issue of size and operational control of the PV-Diesel
system design (Dufo-López and Bernal-Agustín, 2005).

HOGA utilizes GA to search for an ideal structure that requires minimum
investment to install the system. Optimum configuration is defined and ex-
pressed very succinctly: and the type of PV panels, the quantity of photo-
voltaic panels, type and numbers of batteries, power of diesel generator, the
inverter power and the strategy for optimal control over the system along with
its parameters. Moreover, this program reduces computational time to a great
extent as it enhances the configuration of the system as well as control strat-
egy, without rehearsing the whole simulation as the process of HYBRID2 does
(Green and Manwell, 1995). Because of GA, HOGA can be extendedly used
to enhance the battery state of charge set point within paltry computation
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Figure 1: Block diagram of the PV-diesel power system. Every hour the following input data must
be estimated: the current from the PV generator,Ire, AC load current IAC which depends on the
predicted load, and the battery state of charge SOC. The remaining current (IAC ·

VAC
VDC ·ηinv

−Ire
where VAC and VDC are the DC and AC voltages and ηinv is the inverter efficiency) will be
supplied by the batterries Ibat or by the diesel generator Id or by both of them (Dufo-López and
Bernal-Agustín, 2005)

time as compare to other commercial software such as HOMER (Manwell and
McGowan, 1993).

In HOGA, the objective function is to minimize the TNPC of the system
throughout the useful lifetime of the system. Generally, life of the system is
represented by life of PV panel. The TNPC includes both fixed and variable
costs as depicted below (Dufo-López and Bernal-Agustín, 2005):

TNPC = CV ar + CFix. (1)

The variable costs CV ar may change in accordance with according size of
the system and strategy for control and it is expressed as follows:

CV ar = CACQ_PV + CACQ_B + CACQ_BCH + CACQ_GEN

= +CACQ_INV + CACQ_REG + CREP_B + CREP_INV

= +CREP_REG + CREP_GEN + CO&M_GEN + CFUEL

(2)

where CACQ_PV , CACQ_B , CACQ_BCH , CACQ_GEN , CACQ_INV and CACQ_REG
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are representing the cost incurred for acquiring PV panels, the batteries, the
battery charger, the diesel generator, the inverter and the charge regulator.
CREP_B , CREP_INV , CREP_REG and CREP_GEN these costs are incurred
for replacement of the batteries, replacement of the inverter, replacement of
regulator and generator. CO&M_GEN is the operational and maintenance costs
of the diesel generator during the life span of the system. CFUEL is fuel cost
which is consumed by the system during the whole operational life. In the
meantime, the C_Fix (Eq. (3)) has fixed opening cost and life therefore it
does not dependent upon the strategy.

CFix = CREP_BCH + CO&M_PV + CO&M_B (3)

where CREP_BCH is the costs associated with of replacement of batteries and
charger battery of the during the whole life span of the system. CO&M_PV
and CO&M_B are the correspondent costs of maintenance of the PV panel and
the batteries. Individuals are advised to refer the original paper about HOGA
(Dufo-López and Bernal-Agustín, 2005) for further details about mathematical
equations underlying each cost.

Nevertheless, it is important to highlight how the functions in Eqn. (2)
and Eqn. (3) could cause high complexity in evaluation of individual fitness
in HOGA. Only three costs, from a total of fifteen aforementioned costs, have
fix values, while rest of the costs computation demands simulation results as
inputs. For instance, replacement cycle during the year is demanded for calcu-
lation of costs of acquisition of components and consumption of diesel by the
generator is determined by annual hours. Information about these factors can
be only obtained after conducting simulation on PV-diesel system with specific
configuration, depending upon solar irradiation and load demand. Thus, there
will be complexity in computation of fitness value in HOGA since the number
of simulation conducted in HOGA is according to the size of population and
repetition of GA.

3. Proposed Method

Through combined the application of regression analysis, principal compo-
nent analysis and clustering technique, we will purpose a cost effective and
promising method to evaluate fitness value for GA. Interestingly, the proposed
method will occur at the initial stage of GA process, soon after performing
individual population initialization. As it is appeared once in GA, this method
can also be considered a pre-processing tool for optimization technique based
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on population.

This process is developed in two parts. During the first part, individuals
comes with an actual fitness value i.e. TNPC, are clustered into a group ac-
cording to their similarities by using k -means technique. Only component sizes
are used when performing clustering. The reason for which we have used par-
tial system information is that impact of control strategy on regression model
can be examined separately for each cluster. The factor could be avoided from
the model if adding it adds nothing to the explanation of TNPC. Apart from
that, a specific cluster validity index is analysed to resolve the problem of ideal
number of clusters.

In the second part, a multiple regression method is applied to regress TNPC
value on the system configuration. Principal component analysis estimates re-
gression coefficients due to its capability of tackling a multicollinearity problem
i.e. high correlation between the explanatory variables. The analysis is inde-
pendently done for each resultant clusters. The proposed method along with
its flow chart is depicted in Fig. 2.

Throughout the evolution process of GA, a new individual is assigned to an
appropriate cluster before the implementation of associate MLR model for the
estimation of fitness value. Further changes are not required in conventional
GA-based PV-diesel system design.

Figure 2: Proposed method takes place at an initial stage of GA
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3.1 Designing GA for PV-Diesel System Design

Through using GA, finding an optimum system configuration for PV-diesel
system, is the basic objective of this study. Therefore, it is essential to design
GA for the problem. GA performs by engendering a population of numerical
vectors referred as individuals and all of the presents a potential solution to a
specific problem. In GA terminology, an individual is a string of genes, which
has effective value for parameter of interest. In this study, each individual
comprises over three parts; size, strategy for control and fitness value. The
first part consist information regarding size such as quantity of PV panels,
total number of battery, solar generator, type code of battery and type code of
generator. The second part is a sole gene with three possible values and these
values are indicated by numbers (1, 2 and 3). Every number identifies if the
system rub in strategy of load following (1), cycle of charging (2), otherwise
combination of those two strategies (3). Final part, preliminary individuals
holds a TNPC value, in the meantime fitness values of later arrived individuals
is assessed by their particular regression model.

New individuals can be developed by three operators; crossover, mutation
and reproduction. Reproduction operator duplicates individuals into subse-
quent breeding pool along with their probable fitness value. In the meantime,
crossover picks two individuals and then mates them, producing two new in-
dividuals. Sometimes, new individual might be produced through mutation
instead of crossover operation. A new individual is gained through mutating
by keeping a value at single gene location. As the PV-diesel system design opti-
mization problem employs fundamental individual representative therefore fun-
damental operators like elitism for reproduction, uniform mutation and single-
point crossover are relatively satisfactory.

3.2 k-means Clustering Algorithm

An unlabelled data set can go toward a treasure when certain concealed
structure or specific grouping is identified. Cluster or group entails samples of
data that may express similarities to a certain degree within the group. Due to
the availability of data mining techniques, it can be unravel through clustering
techniques. The most famous and frequently used technique is k -means, as it
is easy to implement and use.

k -means technique for clustering, divides dataset into smaller and similar
sets. This separation is based on distance measure in which data sample is
incorporated to the cluster related to the closest centroid. Cluster centroid is
a center of cluster. For crisp clustering like k -means, each cluster is completely

284 Malaysian Journal of Mathematical Sciences



i
i

i
i

i
i

i
i

Low Cost Genetic Algorithm to Photovoltaic-Diesel Power System Design Problem

separate from the other clusters and no overlapping occurs. There are several
methods of distance measures such as city block distance (m = 1), Euclidean
distance (m = 2) and Minkowski distance (m ≥ 3) (Jong-Won and Sung-Bae,
2011). These methods compute the distance from the notation:

dij = d(~xi, ~xj) =
m

√√√√ |~x|∑
t=1

|xit − xjt|m (4)

Probably the toughest task of k -means is to indicate or pick the number
of clusters to be made, k in data set. It is very critical as the quality of
separation can be hampered by the selected value of the k. A set of k values
could be opted instead of selecting a single value of k. As suggested in ref.
Maulik and Bandyopadhyay (2002), several runs of the k -means algorithm are
performed for a fixed value of k, and the clustering corresponding to the run
that provides the maximum value of the Dunn′s index (cluster validity index
for crisp clustering) is assumed to be appropriate (Maulik and Bandyopadhyay,
2002).

4. Multiple Linear Regression Model

For each observed cluster, our aim is to construct a multiple linear regression
model of the form:

Ŷ = ~X~β + λloadLoad+ λcycleCycle+ λcmbCmb (5)

where Ŷ is the projected cost of PV-diesel system throughout lifetime of the
system and ~β = (β̂1, β̂2, . . . , β̂5) represents the vectors of regression coefficients.
~X is a 5×1 vector, which gauge the distinguishable variables that are related
to size of system components. Description of every Xi can be noticed in the
Table 1. Load, Cycle and Cmb are three dummy variables and λload, λcycle and
λcmb are their corresponding coefficients. To demonstrate, when the system
employed load following in the capacity of control strategy, here Load is set to
′1′ allocating ′0′ toward both Cycle and Cmb. Therefore, fitness value can be
estimated by using the upcoming model Ŷ = ~X~β + λload. The aforementioned
rule can be implemented for the selecting other strategies for control.

Assuming there is multicollinearity among the explanatory variables, Xi

thus PCA has been used to estimate the value of ~β . Multicollinearity is an
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Table 1: Explanatory variables in the multiple linear regression model

Variable Component

X1 Number of PV panel in parallel
X2 PV panel peak power (Wp)
X3 Number of battery in parallel
X4 Battery nominal capacity (Ah)
X5 Diesel generator output power

issue that may arise in multiple regressions through higher covariance and vari-
ance of coefficients when predictor variables have witnessed higher correlation.
Concisely, PCA transforms the original variables into a new set of orthogonal
or uncorrelated variables called principal components of the correlation ma-
trix. This transformation ranks the new orthogonal variables in order of their
importance. An ordinary least square estimation is employed to a set of prin-
cipal components to obtain a multiple regression model of response variable.
Henceforth, we call it as principal component regression (PCR). Although good
results and predictions are achieved through PCR, but there is problem with
interpretability of new variables of data set. Because of this reason it is sug-
gested that principal component should be transformed into original variables
in regression analysis.

Let suppose ~bpc = (b1,pc, b2,pc, . . . , b5,pc) is the vector of estimated coeffi-
cients of the parameters of vector ~β . It should be noted, subscript pc is merely
used to denote the estimators are principal component estimators instead of
ordinary least squares estimators. Note that;


b1,pc
b2,pc
...

b5,pc

 =
(
~v1~v2 . . . ~vk

)

α1

α2

...
αk

 (6)

where (~v1~v2 . . . ~vk) is termed as k×k matrix belongs to eigenvector and has as-
sociation with the principal components or eigenvalues and (α1α2 . . . αk)

T is a
k×1 vector belongs to coefficients associated with PCR. Parameter k represents
a number of original variables hence the problem has k principal components.
It is important to note that not all principal components are important for
regression model. Removing less informative principal components will reduce
the total variation in the model; therefore producing significantly improved
prediction or diagnostic model. Since the principal components are ordered
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according to its eigenvalues, it is sufficient to select the first r principal com-
ponents (r<k) containing an amount of variation larger than a pre-defined
percentage threshold (e.g. 85%) (Fekedulegn et al., 2002).

Assume r components are retained, therefore in Eq. (6) will be written as


β1,pc
β2,pc
...

βk,pc

 =
(
~v1~v2 . . . ~vk−r

)


α1

α2

...
αk−r

 (7)

where (~v1~v2 . . . ~vk−r) is the k×(k-r) matrix of eigenvectors associated with the
retained principal component. The (α1α2 . . . αk−r)

T refers a reduced vector of
coefficient (α). After completing the findings ~β, Eq.(6) will take form that is
presented below:

Ŷ − ~X~β = λloadLoad+ λcycleCycle+ λcmbCmb. (8)

We can suppose, without losing generality let Ŷ = Y and Eq.(8) is defined
as following

Y − ~X~β = λloadLoad+ λcycleCycle+ λcmbCmb. (9)

E = λloadLoad+ λcycleCycle+ λcmbCmb. (10)

Here E is the residual term where cluster density, N determines size of E. The
coefficients of dummy variables were estimated using an ordinary least square
estimator, so that

λload
λcycle
λcmb

 = (XT
SXS)

−1XT
SE (11)

where XS = [Load Cycle Cmb] and each Load, Cycle and Cmb is a N×1 vector
with binary elements.
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5. Experimental Results

We have conducted experimentation to confirm and prove the effectiveness
of proposed method to accelerate GA to solve PV-diesel system optimization
problem. With the aim to show exceptional performance of the method, we
have made comparison of HOGA and conventional cluster-based GA. To pro-
vide fair comparison of different GA-based methods, only the first algorithm of
HOGA was considered in the experiments.

5.1 Experimental Settings

The paper of author of original research paper of HOGA was settled as
benchmark by us. A PV-diesel system nourishing the peoples of Zaragoza,
Spain, has been developed and augmented. With 4.37 Wh/m2 solar radiation
and bright sunshine for the most part of the year, indicate that the region is
favourable for the hybrid renewable sources of energy. The average radiation
received per day is depicted in Table 2. Sequence of the power represents the
daily demand for power of the community, which is supposed constant for a time
unit of 1 hour, as depicted in Fig. 3. Variation in demand for different seasons
is ignored in current study; daily load demand remains constant throughout
the year. The demand for AC load is fulfilled by hybrid PV-diesel system,
which has 48 DC voltages and 230 AC voltages as shown in Fig. 1.

Table 2: Average daily irradation

Month Wh/m2 Month Wh/m2

January 2138 July 6644
February 2688 August 5593
March 4150 September 4830
April 4931 October 3456
May 6318 November 2555
June 6941 December 2138

As adumbrated in previous section, GA will be utilized to identify a suitable
control strategy along with value for five size parameters of PV-diesel system.
Number of possible different PV panel types is 9. Maximum number of panels
in parallel is 25. Number of different battery types is 12. Maximum number
of batteries in parallel is 15. Number of possible diesel generator types is 7
(commercial diesel generators from 3 to 13 kW, with prices according to ref.
Schmid and Hoffmann (2004): 0.55 E/W). The costs of the different PV panels
and batteries are shown in Tables 3 and 4. Hence, the total number of ways
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Figure 3: Daily load profile

the system could be configured is 9×25×12×15×7×3=850,500.

When we want to assess all available combinations, we will consume around
2.65 hours, at the rate of hundred calculations per second. Through GA, an
acceptable solution will be found by examining not more than 30% of total
combinations. Hence, it is indicated that ideal solutions provided by PV-diesel
system can be found in fewer than 255,000 assessments irrespective of GA
version. With a population of 1000 individuals, the GA requires maximum 250
generations to converge. On reaching stagnation stage i.e. cumulative change
in the fitness function value over stall generations is less than or equal 10−3,
GA process would be instantly ended. Roulette wheel method for selection was
adopted by us, for reproduction cycle, crossover rate was 90

Table 3: Investment costs of 12V PV panels

Peak power (Wp) 20 36 50 55 75 90 100 110 125
Cost (E) 278 297 385 413 525 676 744 812 884

Table 4: Investment costs of 12V batteries

Nominal capacity (Ah) Cost (E) Nominal capacity (Ah) Cost (E)

43 155 187 433
64 202 200 565
69 207 308 843
96 258 385 971
144 288 462 1017
160 357 524 1054
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Besides HOGA, there are two types of cluster-based GA were utilized to
assess and compare the performance k means algorithm along with Euclidean
distance was applied with k ranging from 2 to the nearest integer of

√
G where

G is GA population size. Appropriate number of clusters from the population
that was seeded is provided with the highest average value of Dunn′s Index
over 20 random runs.

In conventional cluster-based method which evaluates individuals partially,
cluster centroids are appraised as cluster representatives. The fitness of re-
maining of the individuals was estimated in proportion to the distance from
the cluster representative.

For the proposed method, two statistics were used in MLR to evaluate
model fit: R-squared and the F -test. The F -test was used to evaluate the
null hypothesis that adding dummy variables adds nothing to explanation of
the model. An equivalent null hypothesis is that all regression coefficients of
dummy variables equals zero. We reject null hypothesis if the p-value is smaller
than the significance level α=0.01. Following this, a plot of the standardized
residuals against the predicted values was studied to examine whether the MLR
models are adequate for the data or the addition of terms involving the predictor
should be involved. A random scatter of points signals that the current model
is adequate.

5.2 Experimental Results

Referring to a recommendation in ref. Pakhira et al. (2004), the maximum
possible number of clusters an initial GA population (dataset) could have is√
1000 ≈31. Ranging from 2 to 31, the non-hierarchal k -means is executed on

the normalized dataset. Box plots for 20 runs in Fig. 4 shows that the average
value of Dunn′s Index peaks at cluster number 3, indicating that this is the
optimal number of clusters for the dataset. For the following paragraphs, the
three clusters are denoted as Cluster1, Cluster2 and Cluster3.

Table 5 gives computed eigenvalues and percentages of variance associated
with each principal component for each of the identified clusters. Obeying
the ground theory of PCA, it can be seen that the first principal component
accounts for the maximum proportion of variance from the original dataset in
each cluster. For the first two clusters, the total percentage variance explained
by the four components is greater than 85%. This indicates the fifth component
will be excluded from regression analysis. Based on the same judgement, it
seems that the first three components are the most important and have to be
included in the regression model for the third cluster.

290 Malaysian Journal of Mathematical Sciences



i
i

i
i

i
i

i
i

Low Cost Genetic Algorithm to Photovoltaic-Diesel Power System Design Problem

Figure 4: Values of Dunn′s index in the range of k=2,. . . ,31 over 20 initial GA population using
k-means

A first multiple regression analysis includes five elements of sizing compo-
nents as explanatory variables to predict TNPC. For all clusters, the linear
combination of the five variables was significantly related to the TNPC, for
example in the Cluster1, R2 = 0.819,F(5, 366) = 325.79, p < 0.01. As can be
seen in Table 6, PV-related variables had negative regression weights, indicating
that a system with a higher number of PV panels and/or high voltage panels
was expected to be more economic by lowering the TNPC. These relationships
might reflect key factors that could maximize energy utilization from the solar
PV panel Lal et al. (2011). However, the effect of using a different type of PV
panel in the MLR model of Cluster2 was relatively small compared to other
two models. On the other hand a system installed with a large number of bat-
teries and/or high battery capacity was expected to have a higher TNPC. This
is clearly demonstrated since both variables have a positive regression weight.
Based on the results, an optimum system in this study is expected to be in-
corporated either with a high number of small capacity batteries or with fewer
batteries but which have high storage capacity. Positive correlation between
the fifth variable and TNPC was an unexpected occurrence due to the fact that
both the acquisition and O&M costs of a diesel generator are calculated based
on kW/E.

Next, the second analysis was conducted to evaluate the effect of dummy
variables in the previous models. With respect to p-value<0.01 which indicates
the rejection of null hypothesis at the 1% significance level, all the regression
models with additional variables were statistically significant. The null hy-
pothesis is when all the coefficients of dummy variables are zero. Table 6
demonstrates that the use of a Load Following strategy has a positive effect
(denoted by a positive coefficient) on the total cost for systems in all clusters
except Cluster1. However, systems in Cluster2 and Cluster3 that imposed
either Cycle Charging or Combined Strategy as a control strategy can reduce
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Table 5: Summary of PCA for the identified clusters

Cluster Variable Eigenvalue Variance Cumulative
Eigenvalue (%)

Cumulative
Variance (%)

Cluster1 PC1 23.73 40.72 23.73 40.72
PC2 10.44 23.06 34.16 63.78
PC3 10.47 17.97 44.63 81.75
PC4 8.90 15.28 53.54 97.03
PC5 1.73 2.97 55.27 100.00

Cluster2 PC1 15.11 29.15 15.11 29.15
PC2 12.89 24.87 28.00 54.02
PC3 11.86 22.89 39.86 76.92
PC4 7.78 15.00 47.64 91.92
PC5 4.19 8.08 51.82 100.00

Cluster3 PC1 19.10 38.85 19.10 38.85
PC2 11.84 24.08 30.93 62.92
PC3 9.96 22.25 40.89 85.18
PC 46.17 10.56 47.06 95.73
PC 52.10 4.27 49.16 100.00

Table 6: Regression summary of MLR model for investment cost (E) of PV-diesel power system

Item Variable/Type Cluster1 Cluster2 Cluster3

Cluster size N 366 278 356
Coefficient β1 -8,263 -9,322 -3,774

β2 22,237 27,506 20,257
β3 -7,526 -648 -2,230
β4 31,336 38,525 29,691
β5 46,327 7,763 29,140
λload -20,557 69,501 66,962
λcycle 16,018 -20,444 -44,883
λcmb 22,602 -518 -10,060

R2 5 variables 0.819 0.828 0.821
8 variables 0.835 0.846 0.836

F-value F(5,8) 325.79 261.88 321.06
F(8-5,N-8) 11.262 7.697 10.732

p-value 5 variables 0.0 0.0 0.0
8 variables 0.0 0.0 0.0

cost.
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A normal probability plot of the residuals from each cluster is shown in
Fig. 5. Apart from a general linear trend that can be observed we do not have
any severe outliers in each subplot in Fig. 5. In addition for each cluster, the
normality test indicates that the coefficient of correlation between the ordered
residual and their expected values under normality is greater than the critical
value at 1% significance level. These observations suggest that the assumption
that the residuals follow a normal distribution is reasonably satisfied.

A graph of average population fitness versus generation number, as shown
in Fig. 6, is referred for methods comparison for a PV-diesel system design
problem. The methods are the HOGA, the conventional cluster-based GA
(CCGA) and the proposed method (MLR-aid). This study is more interested
in the average values instead of best result thus we can observe how the new
fitness estimation function reacts during the evolution process. Fig. 6 is also a
representation of typical behaviour for 20 runs that we observed. It is clearly
shown that the CCGA has failed to converge less than 50 generations and
the corresponding plot (Fig. 6(b)) suggests that it might not happen even if
it performs more evolution processes. However, contrary to this, both MLR-
aid and HOGA reached their respective optimum solution and surprisingly it
was completed before one-tenth of maximum generation. Speaking in terms
of number of iterations both methods performed, not more than 20,000 fitness
evaluations, which is a relatively small number compared to 255,00 iterations
if running a full simulation. In addition, it seems that the convergence rates
of both methods are quite close for the first five evolution process before the
proposed method got stuck in a local optimum for some generations before it
managed to converge.

(a) (b) (c)

Figure 5: Normal probability plot of the residual for the three identified clusters, (a) Cluster1, (b)
Cluster2 and (c) Cluster3

Table 7 shows the best solution for a PV-diesel system design problem
from HOGA, CCGA and MLR-aid. HOGA′s solution is considered as the
optimal for the design problem since it is only method in this study which
used TNPC as fitness function. The optimum configuration costs the system
were E158,527. According to MLR-aid, the best solution was estimated to cost
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(a)

(b)

(c)

Figure 6: Evolution processes for the PV-diesel system optimization problem. Results are displayed
for three methods, (a) HOGA, (b) CCGA and (c) MLR-aid
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E168,750 but the corresponding TNPC value is E169,100 which is less than
7% above the global optimum. Different to this, the CCGA found the best
combination of components of the system should cost E157,051 but in reality
the cost was E194,484. In terms of component selection with respect to the
optimum solution, CCGA′s solution is obviously flawed compared to MLR-aid
since it has fewer similarity points. As a comparison, MLR-aid suggests the
same type of PV panel, even if the system has to use four more panels. It
also uses the same number of batteries but with a different power selection.
Nonetheless, all methods agreed that Cycle Charging is the suitable dispatch
strategy for the PV-diesel system.

In the last column of Table 7, CPUTime required for the three methods is
represented. The time was reduced by almost 25% and 1% respectively using
CCGE and MLR-aid. This result shows the effectiveness of the fitness approx-
imation approach by means of a clustering technique that can reduce compu-
tational time in GA when solving combinatorial-type optimization problems.

Table 7: An optimum system configuration for PV-diesel power system

Item/Method HOGA CCGA MLR-aid

X1 14 15 13
X2 2 1 2
X3 125Wp 110Wp 125Wp
X4 69Ah 64Ah 144Ah
X5 3kW 4kW 6kW

Strategy Cycle Charging Cycle Charging Cycle Charging
Est. Cost (E) - 157,502 168,750
TNPC (E) 158,527 195, 483 169,100

Difference (%) - 19.7 6.67
CPU Time 2776.25±5.38 651.74±7.24 11.51±2.21

6. Conclusion

A fitness approximation approach has gone through specific improvements
to speed up GA to find an optimum design for a PV-diesel system. Substi-
tuting the use of TNPC during fitness evaluation, a number of multiple linear
regression models were constructed before the GA starts searching. Prior to
the model construction, an initial population of GA was partitioned into sev-
eral clusters using k -means. Each cluster was then associated with a linear
model. Regression coefficients of the models were estimated using principal
component analysis and validity of the models were statistically tested. The
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model enables GA to estimate individual fitness values from the model which
cluster the individual belongs to.

The experiment reveals that computational time can be reduced by the
proposed method and there will be no compromising of the GA where conver-
gence is concerned. However, it would seem that gaps still do exist between
conventional GA and any proposed methods as there exists alternate optimal
solutions for design problems in a PV-diesel design. Future and further inves-
tigation should, however, help to minimize these gaps when focused on robust
estimation procedures and a non-linear regression model. Fitness evaluation
employs different economic models, so where renewable energy power system
design problems exist, this model will be appropriate.
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